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Abstract 

For the past 20 decades, the desire to produce 3D models of the world from 2D images has been researched in order to 
recover 3D point clouds based on Structure from motion and Multiview stereo methods. Meanwhile, the exploitation of minerals 
through quarrying, has been a lucrative market and a major contribution to the infrastructures of the cities since before the 18th 
century. The aim of this study is to apply 3D reconstruction approaches to limestone quarries. Building 3D model of quarry 
limestones from 2D images to be implemented in the quarry industry in favor of improving and modernizing the cleaving process 
through computer vision. The 2D images were acquired by a stereo camera pair, in a similar uncontrolled environment of an 
open-mine pit. In order to create fitting 2D images for structure from motion applications, it was necessary to explore different 
preprocessing approaches. Preprocessing methods were analyzed, and a gamma correction with a histogram equalization 
was deemed to be the most successful approach. Once the images were adjusted in terms of brightness and contrast, different 
SFM and MVS pipelines were tested to conclude which is the best available software application and its correspondent 
algorithm sequence. Although, the open-source software, Meshroom, was determined to be the best 3D reconstruction system, 
Agisoft Metashape can be more appropriate for industry applications due to its community support and convenient renewability. 
Nevertheless, Meshroom allows to study different matching algorithms, with known and unknown intrinsic and extrinsic 
parameters to rule the most effective approach. 
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Introduction 

Computer Vision is a scientific discipline in constant 
improvement, described as the acquisition, processing 
and analyzing digital images or videos to filter crucial 
information through mathematical models [1]. University 
studies have been focused in simulating a human visual 
system, since late 1960 [2], and the following decades 
proved to be decisive in the development and applications 
of this field by deriving a three-dimensional structure from 
images and therefore, creating the foundation for several 
computer vision algorithms, such as, edge detection, 
optical flow and motion estimation. From there on, 
researchers were able to establish new and more complex 
mathematical concepts, including the scale-space theory, 
in order to forge sparse 3D reconstructions of scenes. This 
led to a better understanding of camera calibration and 
optimization methods already established, like bundle 
adjustment. During the 1990s, techniques such as multi-
view stereo solved the correspondence problem to 
advance from sparse to dense 3D reconstruction from 
multiple images [1]. 

From an engineering perspective, Computer vision 
is another study to create and implement automated 
technologies to improve efficiency and reliability of well-
established processes. Computer vision aims to build 
autonomous systems to substitute human tasks which 
operate from human vision. On the other hand, quarrying 

industry is the extraction of natural stone, gravel and sand 
business. The process of extraction aggregates starts by 
cutting and removing big blocks of stone from open-pit 
mines, afterwards, the stone is transported to another 
machine to be cut in order to end up with a marketable 
stone block. The second phase can be described as a 
cutting machine operated by a worker, whose purpose is 
to initialize the engine for the cutting structure to travel 
through the different stone blocks in a row, for 
approximately 30 minutes, but also to identify the exact 
location where the cut should be placed and placing the 
cutting apparatus on this location to be able to perform the 
groove. The cutting location is analyzed by the worker, 
through experience knowledge, to remove flaws and to 
obtain a geometrically pleasing stone block for commercial 
applications. 

The idea would be to create an autonomous system 
that would capture a video of the limestone blocks in line 
on the machine to create a 3D reconstruction model of 
each limestone block and thus, build a more reliable and 
efficient process of analyzing block stones. Therefore, this 
thesis statement is to implement and compare methods for 
full 3D reconstruction on a Limestone block from images, 
captured in an uncontrolled environment, addressing the 
requirements, effectiveness and reliability, for each step of 
the 3D reconstruction. This assignment aims to answer a 
main question: 
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How viable is to reconstruct a 3D model of a 
limestone taken in an uncontrolled environment for 
quarrying industry applications? 

In order to answer this question, it is imperative to 
answer parallel questions, such as: What is the best 
software to perform 3D reconstruction of limestones? 
What is the best method to preprocess the images for 
better 3D model quality but also to allow the pipelines to 
reconstruct the scene? What is the best combination of 
algorithms within the chosen software? What is the 
duration of a 3D reconstruction of a limestone line? Is it 
possible to improve the duration and the quality of the 3D 
model by applying known intrinsic and extrinsic 
parameters? 

Literary Review 

An image-based 3D reconstruction is a robust, 
inexpensive and flexibly automated approach to acquire 
data in the form of 2D images to reach into a virtual 3D 
model [3][4]. A reconstruction made using multiple 
cameras can achieve better geometric data, a surface 
texture of visually realistic models, increase robustness 
and decrease image noise compared to a two-view 
camera reconstruction approach [5]. The approach of 
reconstructing a 3D model of an object or scene from 
correspondences between sequences of images taken 
from multiple viewpoints is the Multi-view geometry 
method. Multi-view geometry establishes 
correspondences between points in different images from 
the 3D position in a scene of the image plane [1]. A SFM 
approach estimates information for a multi-view stereo 
method to be applied in case the camera parameters and 
the camera location and orientation are unknown. 

The process of 3D model building has several steps: 
From a camera alignment procedure, in which a feature 
detection and description algorithm, a feature matching 
algorithm and pose estimation methods. When the camera 
poses are known and detected features are matched, the 
Direct Linear Transform (DLT) is used for triangulation. 
Once a sparse point cloud is generated, it is possible to 
create a dense point cloud through MVS approaches. A 
3D surface is built from surface reconstruction methods, 
such as, the Delaunay triangulation and the Poisson 
surface reconstruction algorithm. Although, these steps 
complete the main implementation of 3D reconstruction, 
the quality of the images is the first obstacle in3D 
reconstruction. If the images are captured in an 
uncontrolled environment, the quality of the images might 
need to be improved, through contrast and brightness 
enhancement, before reconstructing a 3D model of the 
scene. There are a variety of methods to enhance contrast 
and brightness that can be implemented in Python such as 
the histogram equalization, CLAHE and gamma correction 
[6]. According to [7], a good contrast enhancement can 
also be achieved by combining gamma correction to avoid 
excess brightness and a histogram equalization method, 
such as , CLAHE, to provide a good contrast to the images  

Camera alignment 

Camera alignment consists in 5 stages: Feature 
detection, feature matching and camera pose estimation. 
Feature detection is usually the first step in image 

processing with the purpose of identifying relevant pieces 
of information in the image. Feature matching matches the 
features detected and camera pose estimation determines 
the position of the cameras. 

Feature detection and extraction 

The pipelines adopted on this assignment 
implement SIFT or its variations to accomplish feature 
extraction. SIFT is patented by the university of British 
Columbia and described by one of the most influential 
research in Computer Vision [8]. SIFT stands for scale 
invariant feature transform which can be applied to 
different size images, different depth and the most 
advantageous characteristic of this feature detection 
algorithm, it is scale invariant. SIFT transforms image data 
into scale-invariant coordinates. The goal of this algorithm 
is to extract invariant features to be able to correctly match 
against a large database of features from many images. 
The features are invariant to image scale, rotation and 
robust to change in 3D viewpoint, noise and affine 
distortion [8]. As it was mentioned previously, SIFT is 
divided into 4 main steps: Scale space extrema estimation, 
keypoint localization, keypoint orientation assignment and 
the generation of a local image descriptor for each 
keypoint [8]. 

Feature matching 

According to Lowe in [8], the features between 
two images are matched by identifying its nearest neighbor 
in the database of keypoints. The definition of nearest 
neighbor is the keypoint with the minimum Euclidean 
distance. Some features won’t have any correct match for 
not being detected in the previous step or due to noise, 
therefore, the most effective measure to match these 
features is to compare the distance of the closest neighbor 
to the second closest neighbor. The second closest match, 
sometimes, may be near to the first due to noise, therefore 
the ratio between the closest distance and the second 
closest distance is analyzed. If the ratio is greater than 0,8 
these matches are rejected, eliminating 90% of false 
matches and discarding only 5% of correct matches [8]. 
This approach is computationally expensive, especially if 
the input is a large number of images, in this case this 
brute-force method can be replaced by a Cascade hashing 
method or an Approximate Nearest Neighbor (ANN). The 
approximate nearest neighbor method preprocesses the 
points into a data structure to assign the nearest points of 
all the points to a query point q and the distance between 
two points can be define in Euclidean distance. The 
cascade hashing [9] method uses hashing to convert all 
feature into binary code to conduct a fast speed operation. 

The image matching strategies [10] compared in 
this study are the following: The exhaustive matching, the 
sequential and the vocabulary tree matching. The 
exhaustive matching compares each image with all 
images, matching all image pairs exhaustively. The 
sequential image matching depends on the location 
relationship between cameras in the world coordinates to 
efficiently match image in sequential order. Vocabulary 
tree matching matches every image according to its visual 
nearest neighbors, therefore, this method indexes the 
images ranked by similarity of its visual vocabulary. 
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RANSAC [11] is an abbreviation for Random 
Sample Consensus. RANSAC is an iterative method that 
detects outliers and estimates a mathematical model with 
no outlier influence. This method is used to detect and 
discard outliers of matched features. RANSAC can 
remove false matches based on the epipolar geometry of 
the image pair. The majority of good samples allow a 
single model, however bad samples don’t consistently 
agree with a single model, therefore, instead of detecting 
the bad inconsistent samples, the objective is to group 
samples that look the same and fit a model only to group 
the inliers. This method randomly selects the minimal 
points to sample in order to provide a concept of inliers. 
RANSAC algorithm adopts the following structure: 
Random sampling, model building, thresholding and inlier 
counting 

Pose Location Estimation 

This is the last step to build a sparse point cloud 
and consists in determining the camera parameters of 
each image, including intrinsic parameters and extrinsic 
parameters based on all the information gathered until this 
stage. Besides, computing the camera parameters, this 
step also determines the 3D locations of the point by using 
the feature points matched and the camera parameters 
through a triangulation algorithm. 

Camera motion estimation 

Epipolar geometry [1] is the projective geometry 
between two views. Assuming a static scene with a 
minimum of 2 views and a set of point correspondences 
between both views with known intrinsic parameters of the 
camera of both views. Epipolar geometry aims to find the 
3D points based on the parameters. It determines the 
extrinsic parameters, algebraically, and the 3D 
coordinates. Considering a point in 3D world as 𝑋, where 
its projection onto the first view results in a 2D coordinate 
𝑥1 and its projection onto the second view results in a 3D 
coordinate 𝑥2. Epipolar geometry can describe the 
correspondences between the matched feature point of 
the image pair which are: The essential matrix and the 
fundamental matrix. There are various methods to 
compute the camera parameters. The Five-point [12] 
algorithm is used to calculate the extrinsic parameters 
while the eight-point algorithm [13] estimates the intrinsic 
and extrinsic parameters. Usually, the Five-point algorithm 
is computed when the intrinsic parameter is one of the 
inputs on the 3D reconstruction process. This problem can 
also be called a Perspective n-point problem which 
consists in analyzing the correspondences between the 
3D coordinates of an object onto the 2D coordinates of an 
image, in order to estimate the pose of the camera in 
relation to the set of 𝑛 3D points. Normalized 8-point 
algorithm [13] is a method that solves the fundamental 
matrix, assuming it can only be solved if there are 8 point 
correspondences to compute the fundamental matrix. The 
most common methods that solve PnP problems are the 
P3P method and the EPnP method. Both methods are 
frequently developed in open-source software. 

Triangulation 

Once the camera parameters are known it is 
possible to compute the 3D locations of the matched 
points by utilizing the feature points with respective 

correspondences and the camera parameters and 
positions of each image. The DLT [1] is an algorithm that 
formulates a homogeneous linear system and solves a set 
of variables, carrying similarity relations to solve 
triangulation problems.  

Model parameters correction 

Before generating the sparse cloud of the scene, 
most 3D reconstruction pipelines correct the camera 
parameters of each image and the 3D points obtained in 
the previous step through the Bundle adjustment method 
or its variation. Bundle Block adjustment or Bundle 
adjustment was originated in the photogrammetry field 
with the objective of minimizing the reprojection error 
between the location of the image measured points and 
the predicted image points. This approach focuses in 
optimizing the camera pose, the intrinsic calibration and 
the location of the 3D point to obtain an optimal 3D 
reconstruction. This optimization problem is solved based 
on a non-linear least-squares algorithm. Multicore Bundle 
Adjustment [14] consists in applying CPU and GPU 
parallelism to achieve a faster bundle adjustment method 
and solve larger problems A very established library is 
Ceres Solver. Ceres Solver is an open source 𝐶++ library 
for modeling and solving large optimization problems such 
as a nonlinear least squares problem.  

Once the model parameters are corrected, the 
sparse point cloud can be built, and the 3D reconstruction 
process can proceed to a Dense reconstruction process. 

Dense Point Cloud Reconstruction 

Dense point cloud is the representation of depth 
maps. Depth maps are images represented in gray pixels 
of intensity between 0 to 255 value, in which, 0 
corresponds to the black pixels and the farthest away from 
the source that took the images and 255 corresponds to 
the white pixels that are near the sensor. The Dense Cloud 
reconstruction is implemented though Multi-view stereo 
approaches such as CMVS[15]/PMVS[16] and SGM [15]. 
CMVS/PMVS can be divided into two steps: The 
Clustering Views for Multi-View Stereo (CMVS) and the 
Patch-based Multi-View Stereo (PMVS). The CMVS is 
adopted when the 3D points and the camera pose are 
known to group similar image with the intention of 
optimizing the MVS process, afterwards the PMVS can be 
computed to generate the 3D model. 

Surface Reconstruction 

Surface reconstruction states a problem of 
conversion, initiating with a dense point cloud set as an 
input to a surface. This process recovers the topology and 
geometry of the object or scene that is being 
reconstructed. There are two main methods applied to 
reconstruct the surface of the limestone block: The 
Poisson Surface Reconstruction [17] and the Delaunay 
Triangulation [18]. 

Textured Reconstruction 

Textured reconstruction [19], as the last step of 3D 
reconstruction, offers color information mapped onto the 
geometry. This step generates texture parametrization to 
input in the 3D surface model. The color information is 
obtained from the calibrated cameras to generate a new 
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texture mapping through detailed color encoding “per-
vertex”. The texture mapping consists in a parametrization 
that associates a pixel in a 2D image to each point on the 
3D surface and the color is stored in an image as texture 
map.  

Problem formulation 

The 3D reconstruction of the limestone using a 
passive method targets a Structure from motion and 
multiple view stereo algorithms for both open source and 
commercial pipelines. After acquiring the images, the 
software starts by applying a structure from motion 
approach. This phase generates a sparse point cloud. 
Once the camera locations are known the next step uses 
the intrinsic and extrinsic parameters of the camera for 
each image and the corresponding images to improve 
details of the scene and build a dense point cloud. Then, 
the mesh model of the scene is generated in order to 
visualize better the object and detect cracks. The textured 
model is built in the end. This process is organized 
according to Figure 1. 

 

Figure 1: General framework of a 3D reconstruction 

The images taken on the fields of Fravízel 
company were close range and in an uncontrolled open 
environment with similar conditions to a Quarry mine. The 
data acquisition needs to consider a series of rules, 
according to software requisitions. In terms of object/scene 
requirements, not textured, shiny, highly reflective or 
transparent objects should be avoided, as well as moving 
objects within the scene, but also flat objects [20]. A good 
capture of photos should avoid direct light such as in the 
daylight, shadows and one colored surfaces [21]. In terms 
of capturing scenarios, it is better to have more photos 
than not enough, the object of interest should take the 
maximum area in the scene, flash should be avoided and 
good lighting is crucial to achieve better quality of results 
[20]. The images must have a side overlap of, at least, 60% 
and frontal overlap of 80%, without moving the object or 
scene [21]. In this regard, a video was recorded at the 
same time from both cameras and there were 68 images 
recovered. These images were taken in pairs, and so the 
1st image and the 35th image were taken at the same time 
but with the left camera and the right camera respectively, 
while the limestones still and the cameras facing the scene 
moving, with an angle of 83.029º. 

The adopted cameras were Genie Nano C4020 
Color, which is a CMOS sensor of 12,4 MP and their 
respective lenses of 83,029º of field of view [22]. This 
camera can be represented as a pinhole camera model to 

portray the fixed internal camera parameters and establish 
the mathematical relation between the camera coordinate 
and the pixel coordinate in the image frame. The  internal 
and external parameters of the cameras applied in this 
study were calculated in [22]. 

The hardware used for this thesis is a computer 
MSI GT72 3QE Dominator Pro. The most important 
specifications for a reconstruction are the CPU, RAM and 
GPU. The laptop MSI GT72 3QE Dominator Pro has CPU 
of the 5th generation Intel® Core™ i7 5950HQ / 5700HQ 
processor, a 32 GB RAM and a NVIDIA GeForce GTX 
980M. The most demanding pipelines are the commercial 
ones, therefore the minimal hardware requirement 
configuration was established according Agisoft 
Metashape [20]. The minimal requirements, 4 GB of RAM, 
can build a model based on 30 to 50 photos of a resolution 
of 10 MP. However a 16 GB RAM can process up to 300-
400 photographs [20]. A necessary characteristic is that 
the GPU NVIDIA should be supported by CUDA in order 
to accomplish reconstruction in certain pipelines such as 
COLMAP, Meshroom and Agisoft Metashape [23][20][21]. 
For this project CUDA was installed for the pipelines to 
utilize the processing power of CUDA. In terms of software 
most of the popular software work on Windows XP or later 
(32 or 64 bit), Mac OS X Mountain Lion or alter, 
Debian/Ubuntu. This assignment was executed in 
Windows 10. 

This study focuses in the few most popular open 
source and commercial software. Along with the most 
leading software of 3D reconstruction, VisualSFM and 
COLMAP generated the best results according to [24], 
therefore these pipelines were chosen to be analyzed. 
MeshLab is a well-known open-source system for 
processing and editing 3D meshes but also commonly 
used to open the models created by other pipelines such 
as COLMAP, that can compute a 3D mesh but not illustrate 
it. Meshroom was selected among other pipelines for 
being a free, open-source 3D reconstruction software 
based on the commercial AliceVision framework and thus 
providing quality and robustness to reconstruct, not only 
sparse and dense point clouds, but also, surface and 
textured models. Contrarily to other 3D reconstruction 
pipelines, Meshroom developers have been recently 
improving its contents with a major update in 2019 
contributing to a better quality and speed in generating 3D 
models, while competing with some commercial pipelines 
[21], Agisoft Metashape was also chosen for being an 
acclaimed 3D reconstruction pipeline and for its recent 
update transitioning from the popular Agisoft Photoscan to 
Agisoft Metashpe while improving performance. 
Therefore, the open source pipelines focused in this study 
are the following: VisualSFM [25], COLMAP [10][26][27], 
Meshroom [21] and MeshLab. The commercial pipeline 
used is the Agisoft Metashape [20]. 

Most of the algorithms implemented on the open-
source pipelines are known, therefore it was chosen a 
standard sequence of methods for all software to achieve 
a 3D model for proper comparison. SIFT was the feature 
detection approach for all pipelines, even Agisoft applies a 
variation of SIFT. The features were matched through 
brute force in an exhaustive approach for all open-source 
pipelines. The method PnP followed by bundle adjustment 
were executed to estimate and correct the camera poses, 
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respectively. All open-source pipelines adopt RANSAC for 
outlier removal. VisualSFM and COLMAP use 
CMVS/PMVS to produce a Dense point cloud. On the 
other hand, Meshroom applies SGM. VisualSFM does not 
generate surface models, yet, COLMAP produces 3D 
meshes through two different methods: Screened Poisson 
surface reconstruction and Delaunay triangulation based 
surface reconstruction. MeshLab also implements 
Screened Poisson surface reconstruction and Meshroom 
achieves a surface model through the Delaunay 
triangulation-based surface reconstruction. 

Nevertheless, some software weren’t able to 
generate 3D models based on the frames obtained in the 
open pit mine. In order to solve this issue, it was 
implemented 5 preprocessing methods to enhance the 
images. 

Image Preprocessing 

The uncontrolled environment of the open pit 
mine retrieves images with inconsistent lighting and 
shadows between the two cameras. The brightness and 
contrast of an image can change how the images are 
processed in a 3D reconstruction pipeline, by varying the 
number of detected features and matched points, but also, 
compromise the estimation of the camera pose location. 
Between both cameras the lighting should be similar for 
the software to be able to detect features and consider 
those as the same scene but also the enhancement of 
brightness and contrast allows the software to detect more 
features and therefore tie points. Since the output 
information from the SFM process is crucial to apply MVS 
and build a surface reconstruction, the higher quality is the 
camera parameters, their pose location and the overall 
points of the sparse point cloud, the more correct and 
authentic is the dense point cloud and the surface model. 
As it is shown in Figure 2, the images from the first three 
rows and a half are the camera on the left and the rest of 
the images are the camera on the right. At the time of the 
day that the images were captured, the right camera 
retrieves images brighter than the left camera. 

 

Figure 2: Original images 

There were 6 methods applied to these images 
to improve their quality in order to build a good 3D model. 
The preprocessing methods were the following: An 
averaging method, histogram equalization, CLAHE, 
gamma correction, gamma correction with histogram 
equalization and gamma correction with CLAHE. These 
methods were all implemented in python through two 
modules, the Pillow and OpenCV. 

Averaging Method 

The averaging method aimed to compute the 
perceived brightness and contrast to all images and 
average them. Brightness is the overall lightness and 
darkness of the image and contrast is the difference in 
brightness between regions of an image. The perceived 
brightness of the original images was calculated through 
the arithmetic mean of each color band in the image (RGB 
values). Considering RGB color space as a cube where 
each of the three colors are an axis, a corner of this cube 
corresponds to black with RGB (0,0,0) and the opposite 
corner to white with RGB (255,255,255). And so, the 
perceived brightness is the 3D distance between the first 
corner to the actual color value for each band, which in this 
case is the mean of the RGB values of the image. Also, it 
is necessary to take into account that some colors look 
brighter than others by giving a different weight to each 
axis, as it is shown in equation 0.1. 

 𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠

=  √0.241𝑅2 + 0.691𝐺2 + 0.068𝐵2 

0.1 

The perceived contrast can be calculated by 
converting the image into a CIELAB color space that 
expresses three values: L for lightness, A from green to 
red and B from blue to yellow. Once the lightness values 
for each pixel of the image are computed, two images are 
created with the maximum and minimum values through 
dilation and erosion respectively. A 5 by 5 Mask is run 
through each pixel and replacing its value with the 
maximum or minimum value within the mask for dilation 
and erosion respectively. The contrast of the image is 
calculated by subtracting the eroded image from the 
dilated image and dividing its sum. Then, the average of 
the contrast matrix of each original image is computed, 
according to equation 0.2. 

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡

=

∑ (
𝑚𝑎𝑥 − 𝑚𝑖𝑛
𝑚𝑎𝑥 + min 

)
𝑖,𝑗

𝑖,𝑗=𝑚,𝑛
𝑖,𝑗=0

𝑚 × 𝑛 
     

0.2 

where 𝑚𝑎𝑥 and 𝑚𝑖𝑛 are 𝑚 × 𝑛 matrices of the dilated and 
eroded images respectively. 

Once the perceived brightness and contrast are 
known, it is calculated the average of the brightness and 
contrast of the image from the camera in the left and right. 
In order to have images that can be perceived as the 
image from the same scene and smooth the light of all 
images in order to have images with similar brightness and 
contrast it was applied an interpolation between the 
original images and an image with only black pixels with 
same size as the first image. This interpolation is 
implemented according to a certain factor. For the images 
on the right and on the left, in the case of brightness, this 
factor is the percentage of the absolute value of the 
difference between the overall average brightness and the 
average brightness of the right (Camera 1) and on the left 
images (Camera 2), respectively. In the case of contrast, 
the images on the right and on the left, this factor is the 
percentage of the absolute value of the difference between 
the overall contrast and the average contrast of the right 
(Camera 1) and on the left images (Camera 2), 
respectively. This factor certifies that the interpolation is 
between (1 − 𝑓𝑎𝑐𝑡𝑜𝑟 %) of the black images and 
(𝑓𝑎𝑐𝑡𝑜𝑟 %) of the original images. This method is able to 
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ensure that all images tend to the same overall average 
brightness and the same overall average contrast. 
Nevertheless, the outliers continue to be outliers and 
would need to be removed. Further, even though the 
images have the same average perceived brightness and 
contrast, the images continue to have varying lightness 
value pixels within the images. 

Histogram Equalization 

Histogram equalization is an image processing 
technique of contrast enhancement. The histogram 
represents graphically the intensity distribution of an image 
with pixel values in X-axis (ranging between 0 to 255) and 
the corresponding number of pixels in the image on the Y-
axis. Therefore, histogram equalization stretches the 
intensity range of the images to produce a good image with 
pixels of different intensity values instead of having peaks, 
concentration of pixels with small range of intensity value. 

Histogram Equalization aims to stretch the 
intensity range of these images by calculating the 
cumulative distribution function (CDF). Once the 
cumulative distribution function is known, it is applied a 
transform onto the original image to produce an image with 
a flat histogram through a linearized distribution function 
along with the intensity range of these images by 
multiplying the cumulative probability of each pixel 
intensity by the range of the intensity that wants to be 
stretch which in this case is 256 intensity values. Finally, 
the decimal values obtained through these calculations are 
rounded to their lower integer value. 

The results of histogram equalization on the 
original images demonstrates that the histograms of the 
images from the left camera were flattened, and the whiter 
pixels decreased. The histograms of the images from the 
right camera show that the histogram equalization 
eliminated the main peak of darker pixels. 

CLAHE 

CLAHE or contrast limited adaptive histogram 
equalization is another image processing technique to 
enhance contrast. This approach is more robust than 
normal histogram equalization for being an adaptive 
histogram equalization. The process lies in computing 
several histograms to different sections of the image in 
order to redistribute the intensity values of the image. It 
also avoids the possible noise caused by over 
amplification by applying a contrast limiting method to 
each neighborhood from where the transformation was 
established. 

The procedure starts by splitting the image into 
R, G and B, and for each image channel, the images are 
divided into small blocks of 8 by 8 elements and applying 
histogram equalization on them. If this small area has 
noise, this noise will be amplified, therefore to improve this 
adaptive histogram equalization, it is applied a contrast 
limit by establishing that, if any histogram bin is above a 
certain threshold (in this case 40 pixel intensity value) than 
those pixels are distributed uniformly to other bins before 
applying histogram equalization [6]. Afterwards, the 
histogram equalization is applied in the same way as it was 
described previously in this project. Lastly, the R, G and B 
output for each image are merged 

The results of CLAHE implementation on the 
original images show that the histograms from the left 
images have less darker and whiter pixels and the darker 
peak of pixels from the right images decreased 
significantly. 

Gamma Correction 

Gamma correction is another image processing 
technique that enhances the contrast and brightness of an 
image through a nonlinear transformation between the 
input and the output values. This method is also known as 
the Power Law Transform and it can be written according 
to equation 0.3 [6]. The value of gamma 𝛾 is changed to 
choose its best value in order to produce the best output 
image. When 𝛾 < 1 the dark regions of the original image 
get brighter and the histogram is shifted to the right and 
when 𝛾 > 1 the original brighter regions turn darker and 
the histogram is shifted to the left. 

 
𝑂 =  (

𝐼

255
)

𝛾

× 255 
0.3 

where 𝛾 is the gamma value, 𝑂 is the output image 
values, 𝐼 is the input image values for an image with values 
between 0 and 255. 

Gamma adjustment can be implemented by 
creating a table with 256 elements computing the equation 
0.3 where 𝐼 is a number that ranges between 0 and 255 
and gamma is a given variable. The adjusted image is 
obtained by applying a gamma and a lookup tables (LUTs) 
function, from openCV, where it is performed a 
transformation that assigns a new pixel value to each pixel 
of the source image, according to the table previously 
created. This method is less computationally expensive 
than computing the equation 0.3 for each 12000 pixels per 
image. 

Based on the images with gamma correction and 
analyzing the results through their histograms, the chosen 
gamma correction was 𝛾 = 0,4 for both left and right 
images. The implementation of Gamma correction shows 
that the histograms from all images shifted the darker pixel 
peak to a more even tone, around 127 pixel value. 

Gamma correction with Histogram equalization 

Gamma correction with Histogram equalization 
was another implemented method with the objective of 
stretching the intensity range of images that already have 
been gamma corrected to have similar brightness. This 
method is the union of the 2 approaches already 
explained. First, a gamma correction of 𝛾 = 0.4 was 
applied to all images and then a histogram equalization 
was implemented to all corrected images. This 
implementation showed the distribution most pixels in the 
darker and whiter pixel peaks, decreasing the images 
brightness but also contrast. 

Gamma correction with CLAHE 

Similarly to the concept of gamma correction with 
histogram equalization, Gamma correction and CLAHE is 
the association of  methods previously explained. 
However, in this case, a CLAHE is applied on images that 
have already been gamma corrected to have similar 
brightness.  This CLAHE implementation is identical to the 
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previous approach, implying that the histogram 
equalization is enforced on small blocks of 8 by 8 elements 
and the contrast limit is 40 pixel value. This implementation 
showed a decrease in darker pixels to more grey pixels 
due to gamma correction and a small decrease in the 
whiter pixel peak 

Preprocessing method comparison 

The different approaches previously 
implemented are compared in this section in order to sort 
out the best input images to build a 3D model. The 
comparison of the 6 preprocessing methods is done by 
processing the images from each implementation through 
a 3D reconstruction software. The software chosen to 
reach to the best preprocessing method and its output 
images was COLMAP for being one of the best open 
source software for SFM implementation [24][23] .The best 
preprocessed images are the original images that were 
subjected by a gamma correction followed by a histogram 
equalization. Gamma correction with histogram 
equalization was the second preprocess with more sparse 
points produced and the third fastest, 8.8% faster than the 
gamma correction with CLAHE that built a cloud with 1.3% 
more sparse points. As shown in Figure 3, the first image 
was completely recovered from the dark tone original 
image, seen in Figure 2. Further, the difference in 
brightness and contrast between the images from the 
camera on the left and on the right are almost 
unidentifiable. This set of preprocessed images are going 
to be adopted for the rest of this study in order to reach to 
the best results. 

 

Figure 3: Preprocessed images through Gamma 
correction and Histogram equalization 

Results and Discussion 

For each output stage of the reconstruction the best 
preprocessed set of images is introduced on each 
software to further analyze the models. The results are 
divided in 4 stages: The first stage compares different 
software, the second stage determines the best algorithm 
combination within the previously concluded best 
software, the third stage achieves a 3D model with known 
intrinsic parameters for comparison as well as the fourth 
stage that accomplish a 3D model with known intrinsic and 
extrinsic parameters  

Stage 1 

This first stage compares the different types of 
software to conclude the most suitable pipeline in order to 

reconstruct 3D models of limestones. For all open-source 
software, it was used similar procedures with the objective 
of comparing each pipeline The four output stages 
considered were: Sparse point Reconstruction, Dense 
point Reconstruction, Surface Reconstruction and 
Textured Reconstruction. 

Sparse point Cloud 

The duration of the sparse point cloud 
generation, VisualSFM achieved the fastest feature 
detection of the 4 pipelines analyzed, however, VisualSFM 
is an ineffective software at producing a tie point cloud due 
to the misestimation of the camera poses, and therefore, 
nonviable to continue the analysis. Overall, Meshroom 
was the fastest software by taking 46.6% less time than 
COLMAP and 58.8% less than Agisoft. COLMAP 
accomplished a 22.8% faster performance compared to 
Agisoft Metashape. Although, VisualSFM proved to be 
nonviable, this pipeline was able to detect more features 
than Meshroom since the miscalculation only occur on the 
last step of SFM. COLMAP detected 1.93 times more 
features than Meshroom but only 14% features compared 
to Agisoft Metashape. Similarly to the number of features 
detected, Agisoft Metashape produced a cloud with 
distinctly more points than the other pipelines, creating a 
sparse point cloud with 5.5 times more tie points than 
COLMAP and 8.5 times more than Meshroom. 

Dense Point Cloud 

Agisoft Metashape achieves an even more 
complete dense reconstruction compared to COLMAP. It 
is also evident the need for more information in order to 
build the posterior of the limestones and the front of the 
second stone. Another apparent detail is the focus of 
dense points only on the relevant forefront of the limestone 
line, eliminating all the information from the background, 
contrarily to COLMAP. Since Meshroom software does not 
display details of the dense point cloud generation, it was 
not possible to know the total time of this step and the 
number of dense points. Therefore, Meshroom 
performance can only be compared in the other stages of 
reconstruction. Nevertheless, it was concluded that 
COLMAP was 3.5 times slower and calculated 60% less 
points than Agisoft Metashape. 

Surface Model 

COLMAP’s software can compute surface 
reconstructions but its graphical user interface is unable to 
show surface models. There are two methods that can be 
executed in COLMAP: Screened Poisson surface 
reconstruction and Delaunay triangulation-based surface 
reconstruction. The surface model generated based on the 
Poisson reconstruction displayed an undesirable model 
with acceptable structure but a substantially amount of 
noise. On the other hand, Surface reconstruction based on 
Delaunay triangulation retrieved a model more accurate 
and less noisy, but still unusable due to the imprecision of 
the structure compared to the real limestones. MeshLab 
can create surfaces based on dense point cloud through 
the process of Screened Poisson surface reconstruction. 
MeshLab’s input was the dense point cloud produced by 
COLMAP. The extent of noise present in the dense point 
cloud from COLMAP was too large to generate a suitable 
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model, creating an unusable 3D mesh that is even less 
akin to the ground truth than the model built by COLMAP 
with identical method. Meshroom was able to produce an 
acceptable 3D mesh of the scene since most of the noise 
was filtered by the software, achieving a 3D model of the 
limestone identical to the ground truth. Contrarily to the 
other open-source software, the holes in the back of the 
stones were not closed, therefore, the formation of a 
structure on the back that is a misrepresentation of the real 
limestones was prevented but the opening on the front of 
both limestones in line was its consequence. Agisfot 
Metashape generated a 3D surface identical to the 3D 
mesh created by Meshroom, regarding the nonexistence 
of background noise and the stone’s geometry. Agisoft’s 
model has less clutter compared to Meshroom and the 
openings on the limestones are closed, however, this built 
a distortion on the back of each limestone, but the front 
openings were closed. 

Despite the short elapsed time of a Poisson 
reconstruction, it is evident that both COLMAP and 
MeshLab could not produce an applicable 3D mesh for 
Quarry industry use, based on the number of faces 
produced by this method and the images of the 3D 
surfaces. The Delaunay triangulation-based surface 
reconstruction implemented by Meshroom and COLMAP 
had similar number of faces and duration time. However, 
contrarily to Meshroom, most of the faces generated by 
COLMAP are clatter from the background and, even 
though, it created a better model compared to the Poisson 
reconstruction from COLMAP and MeshLab, it still has 
severely less detail compared to Meshroom and Agisoft 
Metashape. Agisoft Metashape achieved a 3D surface of 
the quarry stone line 70% faster and a surface with 1.3 
times more faces than Meshroom. Therefore, the open 
source Meshroom accomplished almost the same amount 
of detail compared to the commercial pipeline, Agisoft 
Metashape, since there are no faces to close the openings 
on the surfaces. 

Textured Model 

The texture model reconstruction is the last 
phase of a 3D reconstruction, although the 3D mesh of the 
limestone can be sufficient to identify the proper regions of 
cutting stone, textured model adds information for an exact 
decision. COLMAP does not create a texture file for the 
mesh, it only uses the vertex color to apply texture, 
therefore it isn’t compared to the other pipelines.  

Meshroom and Agisoft Metashape improved the 
3D surface reconstructed, through texture implementation. 
While it was applied texture on the clutter in Meshroom and 
the opening stayed the same, as shown in Figure 4, 
Agisoft Metashape developed a model that textures most 
of the closing structure from the backside and frontside of 
the stones. Yet, Agisoft was able to perform a texture 
reconstruction over 2 times faster than Meshroom.  

 

Figure 4: Textured reconstruction of limestones by 
Meshroom 

Stage 2 

Meshroom has different algorithms to perform 
each cloud reconstruction. For dense, surface and 
textured reconstruction, this pipeline only has one method, 
therefore, the analysis to improve the current Meshroom 
reconstruction is focused in the SFM stage. Meshroom has 
different algorithms to perform feature detection, however, 
SIFT is the only one applied since it creates robust and 
accurate feature descriptors essential to produce a good 
reconstruction, but also, for the elapsed time being already 
negligible. Image matching and feature matching can be 
evaluated between various algorithm combination, but 
camera pose estimation and correction can only be 
accomplish by the same established methods. Therefore, 
the image and feature matching algorithms are compared 
according three image matching and three feature 
matching methods combined: The exhaustive, vocabulary 
tree and sequential methods for images matching and the 
brute force, ANN and Cascade Hashing for feature 
matching. Any combination built a sparse cloud with 
similar durations and number of sparse points, however, 
the method cascade hashing produced worse results in 
terms of number of tie points combined with any image 
matching process. The number of tie points is the most 
valuable aspect to build a 3D model in relation to such 
small differences in time, therefore the best matching 
solution was feature matching through brute force in an 
exhaustive image matching technique. 

Stage 3 

A correctly scaled 3D model can be built if the 
intrinsic parameters are precise and known. In order to 
generate a scaled model, the same set of preprocessed 
images were provided as input to Meshroom software, as 
well as three different types of intrinsic for comparison 
analysis: The intrinsic parameters without distortion 
coefficients and the intrinsic parameters with distortion 
coefficients by [22] and the intrinsic parameters generated 
by Meshroom in the previously concluded best sequence 
of matching algorithms.. The number of tie points, the time 
to build a sparse cloud and the overall geometry of the 
model were the analyzed components. 

The best apparent sparse point cloud was 
generated by the intrinsic parameters produced by 
Meshroom with faster and a greater number of tie points. 
The model built from the intrinsic with distortion 
parameters is a disorganized cloud of sparse points and 
the model based on the intrinsic without distortion 
parameters produced a cloud with tie points captured from 
the right camera unaligned with the tie points originated by 
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the images from the left. Subsequently, the intrinsic 
calculated by [22] proved to be unviable and the only 
possible application is the intrinsic by Meshroom, based 
on the distribution of the tie point in the 3D model. By giving 
the intrinsic previously calculated, the number of tie points 
increased an insignificant amount, however, the elapsed 
time to generate a sparse point cloud was 10% faster. 

Stage 4 

The final study to improve the 3D model 
generation quality and speed is to input the intrinsic and 
the extrinsic parameters along with the images in the 
software. From the previous analysis it was determined 
that only the intrinsic parameters computed by Meshroom 
are viable and therefore it is the only intrinsic used on this 
last analysis. The extrinsic parameters obtained by [22] 
were compared to the parameters computed by Meshroom 
in the same condition of the intrinsic comparison analysis. 
The number of tie points, the time to build a sparse cloud 
and the overall geometry of the model were the analyzed 
components. 

The intrinsic and extrinsic parameters computed 
by Meshroom generated more tie points and was slightly 
faster than the parameters obtained by [22]. The intrinsic 
parameters calculated by Meshroom with the extrinsic 
parameters obtained by [22] produced a sparse cloud with 
unaligned points from the left and right cameras 
introducing an unapplicable option. While the 3D model 
obtained by the parameters computed in Meshroom has a 
geometry similar to the real object. However, by giving he 
intrinsic and extrinsic parameter previously computed by 
Meshroom the number of tie point decreased 22%, while 
the elapsed time was 33% faster and the model still looks 
similar to the ground truth, as shown in Figure 5. 

 

Figure 5: Sparse Cloud given intrinsic and extrinsic 
parameters by Meshroom 

Conclusion and Future Work 

Meshroom and Agisoft achieved the best 
performances. Meshroom generated a 3D textured model 
with 1,428,422 faces in 59.71 minutes while Agisoft 
Metashape took 84.727 minutes to compute the same 
model with 1,989,573 faces. The detail between both 
models has meaningless variations, the most apparent 
was the Agisoft attempt to close the openings on the 
meshes, creating a distortion on the back of the limestone, 
while Meshroom has openings in the stones. However, 
Meshroom was 30% faster than Agisoft Metashape. Since 
Meshroom enables the user to choose each method used 
in every step, it was possible to iteratively try different 
algorithms and conclude the fastest and most complete 
output. The combination of exhaustive image matching 

with brute-force feature matching confirmed to be the 
fastest and most complete to generate a sparse cloud. 
Further, the intrinsic and extrinsic parameters were 
introduced to build the sparse point cloud in order to 
achieve the fastest generation of a model without 
compromising the model detail, based on the concluded 
sequence of best matching algorithms. Before introducing 
the extrinsic, different versions of intrinsic parameters 
were compared, but only the intrinsic parameters 
computed by Meshroom were viable, proving to decrease 
the sparse point cloud generation by 10%. Since only the 
intrinsic parameters computed by Meshroom are 
applicable, these intrinsic parameters were introduced with 
the extrinsic concluded in [22] and along with the extrinsic 
previously computed by Meshroom for comparison. This 
final analysis determined that the extrinsic parameters in 
[22] weren’t fit to produce a model with geometry similar to 
the real limestones while the parameter computed by 
Meshroom achieved a similar cloud structure with less 
22% tie points in less 33% time than the reconstruction 
without the intrinsic and extrinsic parameters. Overall, the 
preprocess of the images captured in an uncontrolled 
environment proved to be crucial to build a 3D model 
based on open source or commercial software, further, the 
input of the intrinsic and extrinsic parameters to improve 
the time duration of a scaled sparse point cloud 
reconstruction. It was concluded that it is possible to 
reconstruct a 3D model of the limestone in an uncontrolled 
environment through Meshroom in 55.25 minutes. 
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